TABLE IV. Interatomic distances and standard deviations. | | Atom pair (No.) | Distance, A | σ, Α | | Atom pair (No.) | Distance, A | σ, Α | |--|---|--|--|--|---|--|--| | Ga ₁ O ₄ tetrahedron | | 1.80
1.83
1.85
2.93
3.13
3.04
3.02 | 0.03
0.01
0.03
0.04
0.04
0.01
0.03 | Ga _{II} O ₆ octahedron | $\begin{array}{c} Ga - O_{I}(2) \\ Ga - O_{II} \\ Ga - O_{III} \\ Ga - O_{III}(2) \\ O_{I} - O_{I} \\ O_{I} - O_{III}(2) \\ O_{I} - O_{III}(2) \\ O_{I} - O_{III}(2) \\ O_{I} - O_{III}(2) \\ O_{II} - O_{III}(2) \\ O_{II} - O_{III}(2) \\ O_{III} - O_{III}(2) \\ O_{III} - O_{III}(2) \end{array}$ | 1.95
1.95
2.02
2.08
3.04
2.90
2.85
2.67
2.89
2.67
3.04 | 0.03
0.03
0.03
0.02
0.01
0.04
0.04
0.03
0.04
0.01 | | Shortest Ga-Ga
distances | $\begin{array}{c} Ga_{1} - Ga_{1}(2) \\ Ga_{11} - Ga_{11}(2) \\ Ga_{11} - Ga_{11}(2) \\ Ga_{1} - Ga_{11}(2) \\ Ga_{1} - Ga_{11}(2) \\ Ga_{1} - Ga_{11}(2) \\ Ga_{1} - Ga_{11}(2) \end{array}$ | 3.04
3.04
3.11
3.28
3.30
3.33
3.45 | 0.01
0.01
0.01
0.01
0.01
0.01
0.01 | Averages | Ga ₁₁ —O Ga ₁₁ —O O—O, octa- hedron O—0, tetra- hedron | 1.83
2.00
2.84
3.02 | | TABLE V. Bond angles. | TABLE V. Bold wig | | | | | | | | |-------------------|---|---|--|--|--|--|--| | No Transfer | Within a tetrahedron (involve only Ga _I) | Within an octahedron (involve only GaII) | | | | | | | | 2 O _I —Ga—O _I 107.6°
O _I —Ga—O _I 117.8
O _{II} —Ga—O _{II} 112.0
2 O _{II} —Ga—O _{III} 110.2 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Ga ₁ —O—Ga _I (tetrahedral-tetrahedral) angles 2 Ga—O _{II} —Ga 112.0° (2 different O _{II} 's) | | | | | | | * x 1 | Ga _{II} —O—Ga (octahedral-octahedral) angle | <u>s</u> | | | | | | | | 2 Ga—O _{III} —Ga 98.4° (2 different Ga _I 's)
2 Ga—O _{III} —Ga 98.4 (2 different O _{III} 's)
Ga—O _I —Ga 102.7
Ga—O _{III} —Ga 94.1 | | | | | | | a Gar and Gail in same plane. in agreement with the observation¹⁸ that in ionic structures, the mutual repulsion of the positive ions tends to reduce the length of shared edges of anion polyhedra. Because of the short b axis, there are two O_1^{2-} and two O_{III}^{2-} ions (along the b axis) at corners of an octahedron. The structure cannot possibly then have two O_{II}^{2-} ions at the remaining corners of the octahedron, since these must lie in the mirror plane containing the Ga_{II}^{3+} ion within the octahedron. Thus there is only one O_{II}^{2-} ion at a corner of the octahedron, the remaining corner being occupied by a third O_{III}^{2-} ion. At the corners of the tetrahedron, there are two O_{11}^{2-} ions which are along the b axis, the other corners 18 L. Pauling, Nature of the Chemical Bond (Cornell University Press, Ithaca, New York, 1960), 3rd ed., Chap. 13, Sec. 6. being occupied by an O_I^{2-} and an O_{III}^{2-} ion each lying in the mirror plane containing the Ga_I^{3+} ion within the tetrahedron. Thus each O₁²- ion is at the corner of two octahedra and one tetrahedron; each O₁₁²- ion is at the corner of one octahedron and two tetrahedra; and each O₁₁₁²- ion is at the corner of three octahedra and one tetrahedron. If the octahedra and tetrahedra were regular, it would be doubtful that such a structure could exist, because the sums of the bond numbers of the bonds at all oxygen ions would not be 2 (see footnote reference 18). They would be: at O₁²-, 1³/₄, at O₁₁²-, 2; and at O₁₁₁²-, 2¹/₄. However, the polyhedra are probably not regular. In fact, the four bonds to O₁₁₁²- are the longest ones: Ga₁-O₁₁₁=1.85 A, Ga₁₁-O₁₁₁=2.08(2) and 2.02